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FOREWORD

This report was prepared under U. S. Army Contract Numbers
DA-28-017-AMC-1399(A) (U) "Investigation of the Transfer of Energy
from Explosives to Metal, " and DA-Z8-017-AMC-1400(A) "Prediction
of the Theoretical Behavior of Solids Subjected to Explosive Loading,"
in accordance with Appendix D of the above contracts. The work was
under the technical administration of Picatinny Arsenal, Dover, New
Jersey, and Contract Administration of St. Louis Procurement District,
U. S. Army, St. Louis, Missouri.

Work under sub .t contracts has been running concurrently at
Denver Research Institute and many phases of the analyses can be
applied to both programs. To eliminate redundancy in the reports and
yet to express fully the overall results of both programs, the work has
been combined into one report.

This report summarizes the efforts of Denver P- arch Institute
for the first six months of these contracts.

DENVR RESERCH NST -UNIVERST OF DEN
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ABSTRACT

A technique to describe the mode of fragmentation and the vector
velocity of the fragments from a center initiated cylindrical charge has
been proposed in this program. The approach taken permits a deter-
mination of these variables from the shape of the case at the instant of
breakup. The determination of the shape of the cylinder at various
increments of time has been obtained by solving the equations of motion
for an explosively loaded cylindrical wall. From the shape of the wall
both radial and longitudinal strains can be obtained and a probabilistic
method for determining fragment size and number is presented. By

considering both the shape and acceleration of the wall at the moment of
breakup, a method for obtaining the velocity and direction of the frag-
ments is proposed.

A brief review and discussion of past developments for theoretic.J
and empirical determinations of fragmentation characteristics which
include fragment size, number, distribution, and velocity is also
presented.

DENVER RESEARCH NSTOTE- UNNERST OF DENVER
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SI. INTRODUCTION AND DISCUSSION OF TEE PROBLEM

A detailed description of the method of breakup and the charac-
teristics of fragmenting shell and/or bomb casings has been found to be
quite difficult to express analytically. The problem has been studied by
numerous investigators, but an exact theoretical analysis is quite diffi-
cult due to the large number of parameters and variables involved. For
this reason, the existing equations which are normally used to describe
fragmentation and velocity characteristics are of the empirical or semi-
theoretical type, and predict results only for the specific type shell used
in obtaining the correlation data.

At the present time the selection of materials or coidfigurations
for warhead design are based upon engineering estimates of this type
followed by a large amount of testing. The ability to theoretically
predict the behavior of various solid media or combinations thereof,
under the influence of explosive loading would reduce the amount of
fabrication and testing that is presently necessary in the design of any
warhead.

The basic purpose of these two programs is to conduct fundamental
studies on the behavior of solids subjected to explosive-induced shocks,
where the solids are adjacent to the explosive charge. The objective of
the overall study is the formulation of a technique which would allow
(1) calculation of pressures and lengths of shock waves transmitted into
and within solids, (2) prediction of the type and magnitude of deforma-
tion and fracture of solids and, (3) calculation of the vector velocity of
the explosively accelerated solid fragments.

In the present study the explosive-solid interaction has been
separated into three general areas to describe the motion of a solid wall
as it is accelerated by the explosive impulse. The first area involves
the shock wave interactions due to the initial detonation shock front
produced in the solid wall. The second area involves the expansion of
the explosive products and the casing wall out to the point of fracture.
The third area takes into account the contributions to the fragment
velocity due to the gaseous explosion products escaping past the frag-
ments after breakup of the casing. Since preliminary considerations
have shown the effects due to the initial interaction to be secondary (in
comparison to those occuring in the second area), this area has been
given only limited attention in the initial calculations. Contributions re-
lated to the third area mentioned above have been considered negligible

DENM RESEARCi IN$IFTUTEJ- UNIVERSITY OF DENVER
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up to this time, since it is believed that the escaping gas will probably
have no other effect than to maintain the initial velocity attained by the
fragments upon breakup until it is sufficiently dissipated to allow air
drag to begin the slowing down process. The second area mentioned has
therefore received the majority of attention in the study up to this time.
It has been expanded to include the actlial method of breakup as well as
the expansion characteristics of the explosive and the casing. It is felt
that if an accurate description of the shape of the casing as a function of
time can be determined, then a statistical method somewhat similar to
that proposed by N. F. Mott I can be used to predict the number and size
of fragments for various geometries. The velocity and direction can
also be determined from the acceleration and shape of the casing at the
moment of breakup. by a method similar to that described by G. I. Taylor. Z

While considerations to date have involved only well defined sym-
metrical cases with centerpoint initiation, future considerations will
involve such factors as geometry of the case, material properties. ex-
plosive characteristics, buffers, cavities in the explosive charge, wave
shape, line and surface initiation, non-steady state detonation rates,
and various solid materials including metals, plastics, porous media,
and powder aggregates. A detailed investigation of the effects caused by
all of the before mentioned items will be some time in coming, but
through continued studies such as the ones reported on here much insight
on the problems which exist can be realized.

The final outcome of the current contracts will hopefully result
in a handbook type report which could be used by a design engineer to
make predictions in various practical ordnance applications. However,
if the complexity of the program grows to such an extent that this is not
possible, the results will be presented in a form suitable for solution on
a high speed computer.

DENVER RESEARCH - UNIVERSIT OF DENE
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II. LITERATURE SURVEY

Perhaps the most complete compendium and bibliography on
explosives is in the collection of papers used for the graduate study
program at Stevens Institute of Technology. Picatinny Arsenal. on
"Detonation Phenomena". 1957-1958. All phases of the phenomena are
examined in some detail.

Other important publications related to detonation theory include:

1) A paper on "The Stability of Detonation" by Henry Eyring.
R. E. Powell, G. H. Duffy and R. B. Parlin. Chemical
Reviews, 1949.

2) "Behavior of Metals under Impulsive Loads. " J. S.
Rinehart and 3. Pearson, 1954.

3) "Stress Waves in Solids," H. Kolsky, 1953.

4) "The Science of High Explosives." M. A. Cook. 1958.

The remainder of the literature which was surveyed has been broken
down into specific topics of interest. i. e.. velocity and fragmentation
and are listed in a bibliography at the end of the report.

A. Velocity Determination

Several proposed theoretical methods and empirical formulas
have been developed to determine fragment velocities from explosively
loaded systems. Two distinct theoretical models are generally proposed.
with the assumptions that the process is either hydrostatic or hydrody-
namic in nature. Empirical formulas usually make use of and extend
the theoretical models for particular bomb or shell configurations.

1. Hydrostatic Models

Perhaps the most notable contribution to date for the prediction
of initial fragment velocity has been by Ronald W. Gurney,3 using a hydro-
static model for spherical and cylindrical configurations. See Appendix
A. Theodore E. Sterne , L. H. Thomas5, G. W. Atkinson6 . and E. E.
Jones7. have extended the hydrostatic models to other configurati'iis.
Only three variables are necessary to describe the mean initial velocity

DENVER RESEARCH INSTME- UNIVERSIY OF DEVER
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of the fragments in these models, i.e. , mass of charge, mass of case,

and a term which represents the explosive 42-E, where E is defined as

the effective energy per unit mass of charge. The constants in the re-

sultant equations are determined by the geometrical configuration and,

therefore, geometrical parameters are implicit in the form of the

equations.

For example, the equations used to determine the velocity of

fragments for the following configurations take the form shown:

a. A Sphere with uniform casing

Vo= 4R C/M00 -. 6 (C/M + 1

b. An infinite cylinder with uniform casing

S~C/M
Vo ZE o. 5 (C/M) + I

c. A uniform cylinder with identical end plates

Vend plates = E6C
"C (2+3K2 )+6KZMs+ I 2 Me

Vcyl = KVend plates

K Pe' Ps = density of end plate and
ps to cylinder respectively.

te, to = thickness of end plates and

cylinder respectively.

MeMs = Mass of end plates and

cylinder respectively.

The size, number and direction of movement of the fragments

can not be obtained from the above models. The velocity is assumed to
be normal to the defined surfaces and therefore cannot take into account
the effects of position of initiation, end and corner effects, bursting

strength of the casing, etc.

The usual method used to analyze asymmetric charges, using

Gurney type equations, is to divide the case into uniform sections and
ascribe to each section that portion of the explosive charge which is in
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direct contact with it. These data are then inserted into the appropriate
formula (cylinder, sphere, etc. ) to determine the fragment velocity
corresponding to the given section.

In the paper by E. E. Jones 7, a method is presented for adjust-
ing the fragment velocity when voids, space for fuzes and other com-
pressible foreign bodies are included in the charges. This involves
calculating a correction factor which is multiplied by the uniform case
velocity to give a corrected velocity value. The correction factor is
found by,(Y + c -S- )+ .(vc ~ vd)

F = ,V=+v
y- I

where vc is volume of the charge, vd is volume of void and Y is the ratio
of the specific heat at constant pressure to that at constant volume. Nor-
mally a value of Y = 2. 75 to 3. 0 is used for explosive gases.

2. Hydrodynamic Models

G. I. Taylor developed a theoretical hydrodynamic model to
represent the expansion of an incompressible cylinder where the detona-
tion products behave as an adiabatically expanding polytropic gas. If
the explosive is placed in a long heavy cylindrical casing and initiated
at one end, a model is formed wherein the expansion of the gases occurs
without the formation of shock waves other than the detonation wave
itself. For these conditions the magnitude and direction of the frag-

ments can be found using Taylor's Model. Experiments by Singhs,
Allison, et al. ,• H. Jones ", have shown that Taylor's relation holds
relatively well for several end initiated configurations.

J. Von Neumann and R. D. Richtmyer"1 modified the hydrody-
namic equations to include additional terms which simplified the numeri-
cal solution of the equations for problems involving shocks. Kolsky,
Evans, Harlow, (see reference lZ), Gleyzal, Solem, Sternberg z, and

13,Orlow, Piacesi, Sternberg , extended the work of Von Neumann &
Richtmyer to two-dimensional or cylindrical-shaped cased-charges. A
computer program was developed which aided in the numerical solution
of the problem and provided results which compared favorably with
experimental data. Dr. Collins of Picatinny Arsenal is presently work-
ing on improvements of the above models. The disadvantages of these
latter models are their complexity, high cost to run a single analysis.
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and the limiting number of data points they can handle before flooding

the computer. Storage capacity would be particularly important if

inert materials (buffers, wave shapers, etc. ) were included in the

matrix.

3. Empirical Velocity Measurement and Prediction

Techniques

Techniques which are employed for the determination of veloc-

ities of fragments from specific shell or bomb configurations include:

photographic (also radiographic), electronic, mechanical (penetration

capability), modifications of theoretical equations (such as Gurney's

equations), etc.

In order to exclude the inaccuracies associated with measure-

ment of small movements, many of the resultant velocities obtained are

averages over relatively large distances (one to over a hundred feet).

In these instances air drag correction factors must be applied to obtain
initial fragment velocities.

Radiographic and photographic coverage has been obtained for a

great number of explosive configurations from initiation and fur several

microseconds thereafter. In order to obtain a time sequence of events,

several identical shots must normally be run with appropriate timing.

An added problem associated with photographic techniques per se, is

that the high intensity light given off by the explosive gases when the

case breaks soon obscures the fragment movement. Even with radio-
graphic procedures, the path of a particular fragment cannot be followed;

however, the general direction of fragments from a given area of the

casing can be obtained. Personnel from Ballistics Research Laboratory,
as-well as others have been and are presently performing studies of this

type. 14, -s, 16, 17 Personnel from Naval Ordnance Laboratory and Denver
Research Institute have recently developed procedures for obtaining

sequence pictures of detonating explosives using high-speed framing

camera techniques.

A convenient velocity measuring technique utilizes impact and

penetration data. lot 19 Fragment sizes and distribution data are also
readily obtained in such tests with the added feature that the test need

not necessarily be static. Z0, ZI

DENVER RESEARCIH INSTUE--UNIVERSITY OF DENVIR
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B. Fragmentation

The following survey of literature discusses some of the more

generally accepted equations, of both the empirical and semi-theoretical
type. which are generally used to define the fragmentation character-
istics from shell or bomb cases. The discussion also includes the basic
analyses of several authors whose work is applicable to the approach
taken in this contract.

Equations adopted by most workers for calculating fragment

mass distributions over varying ranges of mass, consist of one of the
following forms of the Mott type equations.

A) Nm = Ne-m/it

giving Mm = N(m + L) e-m/i

B) Nm = Ne-(m

giving Mm = N[m+2 (M-) + ZtL] e

C) Nm = Ne -(MAL) 3

giving Mm = N(m+ 3m 3 IL 3 + 6m 30 +6gx)e-(mA)- 3

Where Nm and Mm are the number and mass of fragments having a
mass greater than m, N and M are the total number and total mass of
the fragments, e is the numerical value of the base of Naperian loga-
rithms, m is the individual fragment weight, and ýL is a constant.

Formula A, applies for random or semi-random breakup of a
bar and is observed to hold well for the larger fragments of fragmenta-
tion bombs. Formula B applies for breakup of a thin metal shell and is
observed to hold for two-dimensional breakup. Since nearly all service
projectiles have wall thicknesses less than 0. 6 inches, this equation
expresses the fragment distribution obtained from most bombs and artil-
lery shell. Formula C applies for a very thick metal shell and is
observed to hold for three-dimensional breakup. This equation may be
expected to hold for the smallest fragments of any shell or bomb, since
a large number of fragments will be present whose size is not influenced

DENVER RESEARCH INSTTUME-UNIVERSMl OF DEfi
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by the thickness of the casing. When this occurs the mechanism of
fragmentation may be more nearly the result of a three-dimensional
effect. 27, 23

Another equation used for calculating fragment mass distribu-
tions is the one developed by Payman and stated as followb:

Mm = Me-m/p,

where Mm is the mass of fragments having a mass greater than m. M
is the total mass of the fragments,

giving Nm = • -Ei( mt

IIs

where -Ei(-X)f = dx
x

This formula appears to hold for a wider range of cases than Formula
B, but provides less accurate results in cases where Formula B is best
adapted.

A method which takes into account statistical fluctuations in the
data and provides a technique for fitting one of the above semi-theoretical
mass distribution formulas to a collection of fragments has been de-
veloped by Thomas. s, z0,2 Theoretical reasons are given for a Poisson
type fluctuation, and various methods of fitting the equation were ex-
amined with this in mind. It was concluded, in the referenced report,
that if the masses of all the fragments were measured, the formulas
could be fitted by the method of maximum likelihood. If, however, the
fragments were divided into large weight groups, parameters of the
most suitable form could be chosen to fit the total number and total
mass of fragments heavier than the least mass above which all frag-
ments were collected.

A difficulty in analyzing fragmentation data is the non-uniform

behavior of the projectiles. There is usually a considerable variation
in the number of fragments produced by various shell from the same lot
number. A table contained within a report by GurneyZ3 lists the average
number of fragments of mass greater than m for various type shell and
the standard deviation obtained through repeated firings. The deviations
reported were considerable (on the order of 19 to ±50 percent). It was

RESEARCH ITUT O DENVE
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also pointed out that tests conducted at different times between two dif-
terent explosives in similar metal casings do not yield anything near a
constant ratio corresponding to the relative efficiencies of the two explo-
sives; in one test similarity of performance may be present, while in
another test a wide difference in fragmentation efficiency exists. With
findings of this nature, Gurney, concluded that no more than a rough
agreement could be made between experimental fragmentation data and
the semi-theoretical formulas.

The ecj7uation of form Nm = Nt e -(m/1)0 was further investigated
by Tomlinson following a time period which witnessed the accumulation
of a large amount of accurate data on the fragmenting power of castable
high explosives. The investigation revealed that the total number of
fragments calculated, according to the equation, and the total number of
fragments observed agreed within limits having the same order as the
spread of the data within itself.

Using the hydrodynamic theory of detonation, a straifht line re-
lation was derived between Nt and pT D, as well as ma and pf D. Where
p is the density and D the rate of detonation of the explosive, and ma the
average fragment weight. Both of these relations cannot be straight
line expressions, due to the fact that Nt ma is the shell weight, and the
equation Nt ma = constant is of hyperbolic form. The straight line rela-
tion to pt D appears to be obeyed better by ma than Nt. However, the
error caused by assuming the hyperbolic relation to be that of a straight
line is of the same order as the accuracy of the data involved. By
plotting the experimental fragmentation data for specific shell config-
urations against pf D values for various explosives, a least squares
curve may be obtained which provides a way of comparing the fragmen-
tation efficiency for various explosives.

Since the development of Equation B a completely empirical
relation between fragment weights and numbers was published by the
Safety in Mines Research Station in Buxton, England". The relation
may be stated as

m = 2-P , or
C

Wrn Woe-Cm In 10Wm = WoeCmnl

Where Wo is the shell weight, Wm the total weight of fragments of indi-
100Wm ,adCacntn.Ti

vidual weight greater than m, p = log W and C a constant. This

DENVER RESEA- tiSTITTE -UNERSI Of DENVER
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relation permits a simple analysis of fragmentation data in a much
shorter time than was before possible. The equation has been checked
against numerous known distributions, but its use for a series of dif-
ferent explosives has not been investigated. The value of this relation
lies in the saving of time made possible in the data analysis and the
small improvement in fit as compared to Equation B.

A theoretical basis for the prediction of the mass distribution
of fragments from shell or bomb cases has been proposed by Mott .

The theory pertains to the breakup of a cylindrical ring-bomb, where
the wall of the shell consists of a number of coaxial circular rings, all
with the same inner and outer radii, stacked one above the other around
a thin steel inner lining. Each ring breaks into a number of pieces with
the planes of fracture parallel to the axis of the cylinder.

The analysis concentrates on only radiai fractures and does not
attempt to define a complete theory of fragmentation for solid cylinders.
The statistics for defining the average size of the fragments from a
shell case of a ductile metal depends upon a property of the metal which

is not usually measured, namely, the scatter in the values of the strain
at which fracture occurs in a tensile test. There is in any length of the
circumference of the ring a finite probability of fracture which increases
rapidly as the strain approaches some critical value. As soon as frac-
ture occurs at one point, stress is relieved in both directions away
from the break and the unstressed regions spread with a velocity which
can be calculated. Fracture can no longer take place in the unstressed
regions, but within the stressed regions plastic flow is still continuing
so the strain is increasing within these regions and fracture becomes
more and more likely. The average size of fragment is determined by
the rate at which the stress relief waves spread to prevent further frac-
tures. Famiglietti has studied ring type bombs made with various
metals having widely different physical properties. A more complete
discussion of this analysis is contained in Section III of this report.

DENVER RESEARCH INSTIIUTE -



11

Ill. APPROACH TO THE PROBLEM

In order to predict the dynamic behavior of an explosive-solid
interaction, it is first necessary to describe the manner in which the
solid materials are loaded by the explosive shock wave and the sub-
sequent detonation pressure. Following this it is just as important to
know how the solid materials will respond to the loading conditions
imposed. Consequently, a designer who wishes to control the dynamic
characteristics oi a warhead must utilize techniques which have been
formulated from solid state wave mechanics and the dynamic behavior
of materials.

As previously mentioned, this study has considered the explosive-
solid interaction as being composed of three general areas which describe
the motion of a solid wall as it is accelerated by an explosive impulse.
Two of these areas have been considered secondary up to this time and
the primary effort has been concentrated on the expansion of the explo-
sive products and the casing wall out to the point of fracture.

Prior to considering in detail, the mechanisms by which accel-
eration may occur and the variables and parameters which will be
involved, consider the basic laws which govern the motion of any body.
An elemental portion of a wall having mass, din, will be acted upon by
external forces which when summed will produce the resultant vector,
dF. These forces may act to deform the materials both elastically and
plastically. The work accomplished on the body by these forces may
cause changes in kinetic energy and/or changes in internal energy; in
addition, heat will be produced during irreversible deformation
processes when they occur. Irregardless of the energy processes in-
volved, the following relation will always describe the change in
momentum experienced by the elemental mass.

dVdm = dFdt (1)

Consequently, whether the body is rigid or not, the change in velocity
of its center of mass will be related directly to the impulse dFdt.
Dividing both sides of the equation by the constant, din, and integrating
between limits of V0 and V1 and to and t, gives the total change in velocity
during the indicated time period.

SdF
V1 - Vo f dt-(2)

to

DVR RESEARCH INSITE -
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The value of the total impulse represented by the right side of the equa-
tion determines the magnitude of the velocity change.

If the differential force, dF, acting on the wall element, din,
could be defined in terms of dynamic, geometrical and material param-
eters with respect to time, Equtation (2) would represent the complete
solution to the problem. This integral could then be solved and the
velocity vector obtained. Replacing dF by the indicated functions of
the related parameters would appear to represent quite a chore. Cer-
tainly, a completely general solution would be almost out of the question.
However, specific types of the general problem will yield more readily
to closed solutions.

The initial problem considered in this program is the sym-
metrical explosive expansion of a ring segment of a thin cylindrical
wall, shown in Figure 1. Shock waves introduced in the wall by the
variable internal pressure, p, will move back and forth through the
wall; however, as noted above the average radial velocity of the wall
will be a function only of the impulse f pdAdt.

Since the expansion is symmetrical, all elements, din, will be
accelerated in the same manner. The free-body diagram in Figure 1
illustrates the external forces acting on a wall element. The elemental
force, Pr dO, due to the explosive is opposed by the body force F dm
(where i is radial acceleration) and the components of the hoop forces,
4 (R-r), which act in the radial direction. Writing the force balance,

de de
and observing that in the limit, sin, results in the following

equation of motion,

= ZPr -2o(R - r) ()
p (RI - r0')

This equation will serve as the basis for the following analysis of
explosively loaded uniform cylinders.

A. Determination of Velocity

Using the equation of motion for a cylindrical ring (3), equations

have been developed for determining the velocity and change in radius
of the ring as a function of time.

DENVER RESEAACH INSMIME-UT UNIST1Y OFP I
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r Prde

do

Figure 1. Diagram for the Determination of the Radial Motion
Equation.

DENVER RESEARCH INSTITUTE - UNIVERITY OF
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Since plastic deformation is a constant volume process, a constant
volume expansion is assumed. Therefore, for a unit length of cylinder
the following relation will hold:

AO r (Roz - roa) = 1w (Rz - rZ) = it (R-r)(R+r)

(R + r) (R-r)+ 2r

(R- r)Z+ (R- r)(2r) - (Rz - roz) = 0

(R - r)•= -r4 r + Ro- T -- -r + 4 (7- ro') + Ri

r" = p (RI - r - (4)

Assuming an isentropic expansion,

Pv¥ = constant

for a circular cross-section of unit length. Therefore, Equation (4)
become s:

p P(P - r(Z) rp-(RT-'I

To simplify the notation, let

A= ,POro B=

then "Ar (ay -)+ B Ir-rI

dV dV dr dVr'== = V-E
dt dr dt dr

ZVdV =[A r (zY) + Br - B(rZ+ R0 - ro)] dr

DENVER RESEARCH INSTITUTE-UNIVERSMIT OF DENVER



V2 = A -(z2'-z)+ B r [ R r0a

+ (R2 - r) In (r + J)] +C,

or extracting p- -t of the arbitrary constant, C1, to make the logarithm
dimensionless,

r~f -r - (R' - 4)l rr'r+R~
VzB~rz~~I7RFT ( rj o 1]- 1

to evaluate C, the above is solved for C assuming V = Vo at r = ro and

C = vo?+; [ +r -EIn + -+E oP- (Rh - rr)(y+- l)

The equation for VZ will be rearranged by introducing the following
quantities.

F = , dependent upon r and y

G = r r - M - ro o

K Z PO r aop(K = r _ r a constant for a given set of initial conditions.

L = E r°0  + 0  In o + , a constant for a given set of initialR o+ ro 2 Ro- re

conditions.

B - -4 , defined previously, dependent upon 0*.

Using these values, V? = KF + BG + L + V' (5)

the quan•tity BG + L is zero at r = ro and except for very large r_
r0

(>3) or thick cylinders (wall thickness> r0 ) or o- greater than . 1 P0 ,
this will be negligible compared to KF. If P0 is assumed to be of the
order of 100 lbs. per square foot, and a of the order of 10" lbs. per
square foot, the only terms contributing to the calculation of VZ will be

DENVER RESEARCH INSTITUTE - UNIVERSITY OF
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KF and Vz. Since the final value of V is of the order of several thousand
feet per second and the order of V0 is of the order of several hundred
feet per second, V0 will be neglected for the initial analysis. Thus
Equation (5) may be simplified to

Vz = KF (5a)

V - 4-K-

The resulting equation for V can be integrated exactly only for certain
values of y. In general a numerical integration process is required
to obtain the required curves of r vs. t and V vs. t. To accomplish
this, assume the following test conditions.

P 0 = 1 X 10' psf

p = 15. 25 slugs/ft 3 (steel)

R0 = . 1667 ft

r= .125 ft

y =3.0

V0 = 0

r 1 dt
Then V is plotted as a functioin of - , Figure 2, v = - is plottedrV dr

r

as a function of -, and the latter curve is integrated graphically tor 0 r
obtain a plot of - vs. t, Figure 3. By cross referencing Figures

r0

2 and 3, a plot of V vs. t is obtained, Figure 4. Figures 3 and 4 are
then used in conjunction with the calculated values of time as a function
of position of the detonation wave in the cyclinder to determine shape
and velocity profile of the casing. Rupresentative curves showing
velocity as a function of position along the cylinder, x, for four differ-
ent times during the expansion process in a center detonated cylinder
are shown in Figure 5.

The direction of the velocity vector for a given fragment will
be obtained from the shape of the casing at the time of break-up
(Section B) and will be approximated by the Taylor Angle, i. e., one
half the angle formned by the normal to the cylinder axis and the normal
to the surface of the expanded cylinder in the region of interest.
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To examine the effect of various values of y on the velocity of
an expanding cylindrical casing assume that V0 = 0 and that o- is negli-
gible. The assumption regarding T will not affect the results more
than 5% for initial pressures greater than I X 108 psf. With these
assumptions, Eqv ation (5) reduces to Equation (5a) as before, i.e.:

V = 2 Po [rez -rozy r-(Zy-z)1

0 ~(R z - o) ( y T1) ~ 2~
1 .(r~O)Z' zY-z1

I ~1 -AO)Y -)o Z-I

V2 = 2PO r0 r =K r KF
PW - rob Y-I Y-l

where K is a constant dependent upon the initial internal and external
radii of the cylinder and the initial pressure of the explosive, and F is
a function of y. From this we see that velocity is a function of %"F4-.
Plotting 4TF vs. r0 for various values of y, Figure 6, we find that
for r close to r0 , that is, early in the expansion process, the value of
y is relatively unimportant. In fact at r = re, the slope of the curve is
determined by

!" [_ (z.l),ro, ( )ZY13
r=r0 = 1 r r=r0

which is independent of y. Presumably, y can be quite high (5 or higher)
early in the expansion process, but drops rapidly due to the decrease
in pressure. Therefore, once a value of y has been determined which
defines the expansion process at the point of maximum expansion, the
assumption that this value remains constant for the entire expansion
process should present no serious errors in the velocity determination.

The dependence of the velocity of the expanding casing upon the
pressure developed by the explosive used is presented in Figure 7. It
may be observed that the shape of the two curves are the same. How-
ever, with a threefold decrease in pressure the lower curve is displaced

1
by a constant factor of 7 from the upper curve. This significant

influence on velocity points out the relative importance of the type of
explosive used, and the necessity of selecting the proper explosive to
attain the desired fragment velocity.
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L Determination of the Shape of Casing During Expansion

In this program it will be assumed (1) that a knowledge of the
shape of the casing during the detonation process will be sufficient to
determine the average direction of fragment travel from a given point
on the casing, (2) that the rate of change of the casing motion (velocity)
at the time of breakup will be the initial velocity of the fragment, and
(3) that the size and number of fragments may be determined from a
statistical analyris using probability of fracture as a function of strain
and time.

An accurate determination of the shape of exploding cylinders
and plates should include a real equation of state for both the gaseous
explosion products and the metal casing, and multi-dimensional flow
equations for the gas. However, since accurate equations of state for
gases under the conditions prevailing in a detonation process are not
generally known, and multi -dimensional flow equations are quite
difficult to solve without recourse to high speed computer techniques,
such an accurate determination of shape during the expansion process
could become extremely involved. Investigators in the field have made
numerous attempts at simplifying the problem. Computer programs
have been developed to account for the multi-dimensional gas flow.
(See Appendix A.) One of these, the Cyclone Code, assumes a perfect
gas expansion with ratio of specific heats, y, approximately equal to
3 (2.6 to 2. 8 for various explosives). Another program, the Roc code
(Pierson at Picatinny) makes use of more sophisticated equations of

state in the gas and in the casing.

The analysis presented below provides a simplified method for
determining the shape of the casing at any time during the expansion
process.

The initial assumption will be the same as that made by Gurney

and G. I. Taylor, i.e., that the pressure over a given cross section in
a center detonated cylinder varies with time but is uniform over the
section. It will be further assumed, for a first approximation, that
there is no axial gas flow during the expansion process. End effects
will be neglected for the present and the model will consist of a long
cylinder, filled with explosive, detonated on the axis at a point midway
between the ends of the cylinder. It will be assumed for purposes of
determining shape that the casing has mass but no strength in tension
or shear. The sequence of events during the expansion process is then
explained as follows. (See Figure 8.)
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It is assumed that the casing material moves radially as a series
of independent rings under the influence of the gas contained within the
rings. No motion takes place until the detonation front reaches position
1 in Figure 8. At this time, ti, the first or center segment begins to
move under the influence of the gas contained within it. The next seg-
ment on either side of the center does not begin to move, however,
until the detonation front reaches position 2. At this time, tz, the first
segment has moved to curve a and the casing then appears approximately
as shown by curve a. The process then continues as the detonation front
progresses along the surface of the cylinder. To obtain the deflection
curves of the cylinder, requires the expansion of the individual segments
as a function of time, and the time of arrival of the detonation front at
any point along the cylinder.

To determine the time of arrival of the detonation front, consider
Figure 9. Assume a detonation velocity, c, and a distance along the
cylinder from the point of initiation to the point of contact of the detonation
wave with the cylinder wall, x. The radius of the detonation front is a,
and the initial radius of the cylinder is r0 . Then:

a =ct

•+0 X = aa = cz t'

t= -- Z=
c C rO 2

This expression will then provide values of time, t1 , t?, t3, t , at
which the detonation front arrives at points 1, 2, 3, and 4 respectively,
in Figure 8. With the detonation front at point 4, for example, the total
time of expansion of ring c will be t4 -t 3, that of ring b will be t4 -t?, and
that of ring a will be t4 -tj. Plotting the radii of the various rings using
Figure 3 then provides a shape determination at any time, t, determined
by the location of the detonation front at that time. (See Figure 10.)

It is to be noted that the same expansion characteristics are
assumed for each segment of the casing and the shape is derived from
the variable time of application of pressure from the detonation wave.
Thus, irregular shapes may be analyzed by changing the expansion
characteristics of the gas and the time of application of the detonation
pressure over various elements of the casing. Moclifications of the
expansion process may also be used to analyze buffers and unusual
explosive configurations.

DENVER RESEARCH INSTITUTE - UNIVERITY



Z7

roI\

Ia ..............
!B

Figure 9. Schematic for Determination of the Time of Arrival of the

Detonation Front at the Cylinder Wall.

DENVER RSA



Z8

0

w

.o.

0

-4

-4)

'4

.0

q:>
.o4

0

00

4* 0
.. 4

0 0 00

SN e.40

I I I I I I I I I I I I I I I I I SI



29

C. Determination of Fragment Distribution and Size

The approach used in this program for describing the explosive
breakup of metal cylinders, plates or spheres is based upon probability
considerations and is similar in part to that proposed by N. F. Mott. t
The total problem of breakup is not encountered in Mott's treatment
since only circumferential strains are considered. It is obvious that
to fully describe the breakup of a continuous cylinder, both circum-
ferential and longitudinal strains must be considered.

I. Determination of Strain

The statistical method of determining breakup. which will be
explained later, requires the determination of the conditions of strain
at any point on the cylinder as a function of time. For purposes of
analysis the strain will be assumed to consist of two independent
components. One of these, the circumferential strain, is directly
proportional to the radial displacement of a given ring, and may,
therefore, be determined directly from the position-time curves des-
cribed previously. The other component, the longitudinal strain, is
somewhat more difficult to obtain. The determination of longitudinal
strain which will be used in future analyses is explained by the following.

It will be assumed that the shape of the casing during the detona-

tion process is given by the analysis described previously in Section B.
As the casing expands, the particles will travel paths corresponding to
the assumed direction of the velocity vector, i. e., the particles will
start radially and thereafter follow paths determined by the "Taylor
angle" (defined on page 16) measured at the corresponding points on
the expanded surface of the casing. Thus, the particles directly over
the initiation point will continue to move radially while all other points
will follow paths curving away from a plane perpendicular to the axis of
the cylinder passing through the initiation point. (Figure II.) This will
provide a maximum longitudinal strain and strain rate immediately over
the initiation point with strain decreasing to a nearly constant value along
the axis as the path lines become nearly parallel. This condition will
tend to promote small, nearly rectangular fragments near the initiation
point where the c-ilcumferential and longitudinal strains are nearly
equal, and longer fragments farther along the cylinder where the
longitudinal strain is less than the circumferential strain.



30

o

0

9:
0

4.

4',
0



31

2. Application of Statistics to the Method of Breakup

The following analysis is due in part to Mott. In his analysis,
Mott predicts the breakup of a ring wherein each fracture is assumed to
occur over the entire cross section of the ring simultaneously, thus
breaking the ring. A release wave then propagates through the ring
away from the fracture, and at some later time a second fracture occurs
in some part of the ring not yet reached by the release wave. A second
pair of release waves then emmanate from the second fracture and the
process is repeated until the release waves join to relieve all stress in
the ring. At this time the fragmentation process is complete.

Attempts will be made to apply a similar but expanded method
to the breakup of a center detonated cylinder with the following modifi-
cations.

a. The fracture will be assumed to occur instantaneously
through the cross section of a region of constant stress and will
propagate at a velocity determined by the properties of the casing
material.

b. It will be assumed that a stress relief wave propagates in a
direction perpendicular to the fracture at a constant velocity determined
by the properties of the casing material.

c. Both circumferential and longitudinal strains will be con-
sidered in the final statistical analysis.

To clarify the process, a review of the method proposed by
Mott is as follows. Define the strain in terms of the original circum-
ference of the casing material, 10 , and the final circumference I, as

S -- o 1
to 10

Now assume that the chance that a specimen of unit length not yet
fractured will fracture when the strain increases from s to s + ds is

CeC e asds

Then the probability, dp, that any specimen will fracture between s
and s + ds will be the product of the above expre'-ion and the probability
that the specimen reached a strain value s withou fracturing. If p
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is the probability that the specimen breaks before a strain s is reached,
then we have

dp = (l-p) C e asds

and upon integrating both sides,

P s

f f Ce"Sds
o l-P o

C as
- In(I-p) C e

a

p, ex'p C ea s

The probability of fracture as a function of strain is shown in Figure
12. The strain, here assumed to be 0.5, is the strain at which the
probability of fracture is 0. 5. Assuming a constant rate of strain
increase, it is seen that the probability of fracture will increase from
a low value to a value near one as the strain passes through a range
around the average strain. The width of this range is determined by
the value of a used for the casing material. A value of a = 50 was
used to plot the curve shown. In general, a lower value of a widens
the range and a higher value makes the range narrower. Thus, the
higher a values correspond to shorter times for the probability of
strain to increase from a low value to near unity with a given strain
rate. Since the fragment size will depend upon the length of time
between fractures (time during which stress relief waves may travel)
the higher values of a suggest a greater number of smaller fragments,
conversely, a lower value of a suggests fewer but larger fragments.
Now,the average strain for fracture is given by

G0

SO =f d P ds ds exp -(eaS) Ceas ds

So0= -- +

E f In x e-xdx -- -0. 577...

0
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Figure 12. Probability of Fracture as a Function of Strain.
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and the r . in. s. of the scatter in the strains at fracture is

(a -so)? ýý d Zý 1 1.28
1 ds a

f 0"0 Sil,

thus for a a (dependent upon material properties) of 128, the rms of the
scatter in strains is 0. 01 -

At this point. the Mott analysis is modified somewhat by the
assumption of constant relief wave velocity. The breakup of a ring by
fractures in the axial direction will be considered first. If the length
of the unfractured ring is I = Zwr, and at some time. t, n fractures
have occurred, then the rate of increase of fractures is given by

dn as
78- = ff C e

where f is the proportion of the ring still unstressed. Introducing the
variable

0 = as, then

dn IfC 0 (6)
dý -cL

If the stress relieved region around a crack propagates into the mate-
rial with velocity Vs and the strain rate is assumed constant during
the fracture process,

ds V
Ft ý 7

where V is the velocity of the ring and r the radius, then

Y t
r

0 a Y t
r

Thus, 0 is proportional to time as the fracture process progresses.
If a fracture occurs at 0 = 01, the region about the fracture which is
stress relieved, and hence safe from further fracture at any later
time. is then
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x = Vs (t-ti)

Or 0
= Vs ----

SV aV

X0 (0- 0,)

r
where x0 Vs Fa V

Prior to the first fracture, Equation (6) can be integrated treating f
as constant and equal to 1. Thus, at the time the first fracture occurs,
n = 1 and from (6)

1 2 1- ~

where •0 is defined as that value of 0 corresponding to the time, to,
at which the first fracture occurs.

00 =in a
I C

and (6) may be written as

dn = fe (O 00) d4

An analytical expression for f can be obtained as follows. Consider
the time after the first fracture, but prior to the second fracture in
a ring. During this time, a stress relief wave travels through the ring
at velocity Vs from both sides of the fracture. The fraction of the
ring still stressed at any time t is then

f = I-ZVs(t-t!) = I zVs (t-to)
I - -

If the second fracture occurs at time t1 , then from that time on, two
additional relief waves propagate through the ring and the fraction of
the total ring still stressed is

f=I Vs (t-t 0 ) - Vs (t-tl)
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The general expression for f at any time, provided that none of the
relief waves meet in the ring, is

f =1 Nt- tk (7)

Where N is the number of longitudinal fractures that have occurred and
tk are the times at which the fractures occurred. If two relief waves
intersect at time t , then at this time the rate of propagation of stress
relief will be reduced by 2 Vs. If P is defined as the number of such
intersections and tP the time at which they occurred, then (7) becomes

N-1 1
f = I - 4• (N-P)t- tk + Itp (8)

k=O J=
substituting (8) into (6) and integrating, it can be shown that

n =1I +f{exp[V.! (t-t0 )] 4 ff + ZVs r(N-Pf 2 Vs NP(-) (9JrI Q J - • (N-P)(t-tI) (9)

Equation (8) and, hence, (9), is discontinuous and cannot be solved
directly for t. However, graphical techniques similar to those used
by Mott can be used here to determine the total number of fragments
and the fragment distribution due to circumferential strains.

The method for determining the longitudinal strain along a
cylinder was discussed previously in the section on the determination
of strain. Although the methods for determining longitudinal strain
appear very feasible at this time; no actual statistical approach has
been derived which accounts for all of the variables of the system.
Because of this no complete mathematical model has been developed
to date.

3. Method of Breakup

A method has been presented by which certain predictions as to
fragment size and distribution can be made in the case of a uniformly
stressed ring having a given rate of increase of strain. This method
will now be qualitatively extended to apply to breakup over an area.
It will be assumed that a given area of casing material is uniformly
stressed in tension in all directions. This condition is closely
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approximated by a small portion of an exploding sphere. The breakup
process is shown schematically in Figure 13. In order to simplify the
process, it is assumed that the first cracks formed are at right angles,
and during the breakup all succeeding cracks are parallel or perpendicular
to the original cracks. Early in the fragmentation process, the cracks
may actually start in random directions. However, as a given crack
progresses through the material, the stress is relieved on either side
in a direction such that the only stress left in the material tends to
prnmote additional cracks perpendicular to the first crack. In any
geometry other than spherical, it is probable that the stress will build
up initially in a preferred direction, thus, promoting formation of the
early cracks perpendicular to the direction of highest stress. Thus,
the model chosen for illustration in Figure 13 is a square which has
been subdivided into ten horizontal and ten vertical bands. It is assumed
that all cracks formed will be either horizontal or vertical.

General rules have been followed in constructing the simulated
breakup shown. These are as follows:

a. When a crack initiates, it forms simultaneously over the
narrow dimension of a band and begins to propagate at some velocity
into the neighboring bands. Cracks form only at the edges of bands.

b. When a crack is formed in a band, a release wave propagates
along the band perpendicular to the crack, and moves along the band
away from the crack in both directions.

c. If a crack forms at a point in a band closer than one band
width to a point in an adjacent band where a crack has previously
started, then the new crack becomes an extension of the old crack.
Thus, the apparent velocity of crack propagation can be much higher
than that normally assumed.

d. If a crack propagates into a previously formed crack at
right angles it is stopped.

e. If a crack propagates into a region in which stress has been
relieved from a previous parallel crack, it is stopped.

f. When the entire surface has been relieved of stress in both
directions, the fragmentation process is complete.



38

lit I

a d

be

0 f

Figure 13. Schematic of Fragmentation Process for a Uniformly

Stressed Section.

l~ ~ ~ ~ ~ ~ ~ 1 l l l ll ll ll



39

The process depicted in Figure 13 is as follows. At a, four
initial cracks have started. These were selected at random, rather
than assuming a given strain rate and attempting to apply strict statis-
tical methods. At b, the four original cracks have 1-rown to three times
their original length, cracks having formed on either end of thf original
cracks in adjacent bands. A stress relief wave has propagated on
either side of the four original cracks, and four new cracks have
formed.

At c, the original cracks have propagated across new bands
and the stress relief waves have continued to propagate away from
earlier cracks. Again, several new cracks have formed. At d, some
cracks have been stopped by other cracks or by stress relieved regions,

and most of the plate has been stress relieved in one direction or the
other. At e, the last of the new cracks have formed and the fragmenta-
tion process is nearly complete.

The shaded areas in b through e represent regions of stress
relief. At f, the entire plate is stress relieved and the fragmentation
process is complete. Note the frequent occurrence of cracks which
have propagated into a fragment, but not entirely through it. Such
"split" fragments are often observed. The model shown in Figure 13
is meant for illustrative purposes only. No attempt has been made
at this time to rigorously plot a fragmentation process.

The problem at hand, i.e., that of an exploding cylinder or a
ncnuniformly exploding -ilate, presents some additional problems.
Aside from the time element introduced into the process by the Mott
analysis, there is an additional time element in an actual detonation.
This additional time element is caused by the rate of application of
force to the casing which in turn is dependent upon geometry and
t•xplosive characteristics. These time elements must be combined
statistically to provide a realistic determination of the fragmentation
process. Investigation of these effects plus further development of the
statistical approach for defixing fragmentation by a probability technique
based upon strain criteria will constitute the major effort for the next
reporting period.
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APPENDIX A

THE GURNEY EQUATION

The development of Gurney type equations will be discussed

since some of the assumptions used by Gurney and others have been

analyzed in this study. The Gurney formula will be derived for three

cases: (A) the one dimensional, or "piston" type of expansion, (B) the

two dirr ensional, or cylindrical expansion, and (C) the three dimen-

sional or spherical expansion. The following general assumptions are

made:

1. The detonation front reaches all points of the casing simul-

taneously, and, thereafter, the pressure within the casing varies with

time but not with linear dimension. Thus, at any given time, the pres-

sure within the casing will be the same everywhere.

Z. The strength of the casing wall is negligible, and all frag-

ments are ejected simultaneously.

3. The final velocity is a function only of some initial energy

per unit charge mass, E, stored in the explosive gases, and the charge

mass to casing mass ratio, C/M.

For case A (Figure A-l), consider a piston at distance I from

a stationary wall and an arbitrary surfact --- distance x from the wall.

Since pressure is assumed invariant with respect to x, the mass of gas

between the arbitrary surface and the piston, and that between the sur-

face and the wall, must be constant. If the pressure is invariant so is

the specific volume, and, hence, the ratio of the volume behind the sur-

face to the total volume is constant, or:

Ax x
- - -= C,

At I

where A is t&- area ->f the piston and C, is a constant independent of

time.

If t o is the initial distance from the piston to the wall and xO the

initial distance from the surface to the wall, then:

tco
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PISTON

Figure A- 1. Schematic Representation for One Dimensional Expansion
Process.
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and:

1 1+ f V(t)dt

xo,
K - CjIJ =

10

xo + O f V(t)dt = xo + f V(t)dt

-xo+f2 V(t)dt =x0 f Vx(t)dt

where Vx(t) is the velocity of the surface. Thus, we have:

Vx(t) =x V(t) (A-l)

which implies that the velocity of the gas is a linear function of the
distance from the back wall, with maximum velocity equal to the veloc-
ity of the piston.

Case B (Figure A-Z), considers a uniformly expanding cylinder
of unit width. Using the same arguments presented above, the following

development results:

The volume of gas from the center to r is:

Vr = wira

and the total volume is:

vt= w RZ

and:

yr Ut r ' = "
vt W Rz R

R R.+fv(t)dt

r CR= ro + V(t)dt

ro + fVr(t)dt
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v(t)

Figure A-2. Schematic Representation for Two Dimensional or
Cylindrical Expansion Process.
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where Vr(t) is the velocity of the surface, thus:

Vr(t) = V(t) (A-Z)R

which again implies that the velocity of the gas is a linear function of
the distance from the center to the casing.

Case C is quite similar to case B, the only difference being in
the expressions for the volumes, Vr and vt.

4 3Vr = 3 ir3

43

Vt = wR3
3

and:

4 r 3
Vr 3 r

Vt #R 3 R
3

which leads to the same result, i. e., the velocity of the surface is a
linear function of the distance from the center to the casing.

Gurney assumes this linear velocity relationship, and it may be
seen that this implies a uniform pressure with respect to linear dis-
tance. Further, it is seen that in the Gurney formula the detonation
front is-assumed plane in Case A, cylindrical (line initiation) in case B,
and spherical (point initiation) in case C.

In accordance with assumption 3 above, assume that the initial
energy, E, is converted entirely to kinetic energy in the gas and casing
at the moment of breakup. If the breakup velocity of the case, and
hence fragments, is VB, then the energy in the case is:

Ec = 1/2 M VBz

where M is the mass of the case.

The kinetic energy in the gab is found by integrating the expres-
sion for kinetic energy over the volume of the gas:
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Eg dv

where pg is the density of the gas and Vg is the velocity of the differen-
tial element. Since the assumption was made that Vg is proportional to
linear distance, the equation for Eg may be written as:

E =VBzPg f R rz dv
ZRZ o

where r is the linear distance from gas at rest to gas at the casing, and
R is the distance to the casing.' Now if the total charge energy CE-Eg+
Ec, then:

CE VB M+RZ dv

or:

M+_. R rzdv

0

For case A;

SzAd, PgAl = C
12 3 3

where C is the charge mass, and:

VB= 4-•J~ C

+3 (A-3)
C_

Z-E +M

fl + 3MIV

For case B:

g R rz Zirdr _ C

RZ --0
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or:

2

(A-4)
- 1 + 1/2 GIM

For case C: 43
P O R rZ 4lrZdr • irR 3pg( 3 ) 3

or:

VB=J 2 -• CE_

(A-5)

I C/M

Equations 3, 4, and 5 are the Gurney equations for piston, cylindrical,
and spherical expansions, respectively. Note that although no infor-
mation is available as to direction or fragment size, the initial velocity
predicted should be as accurate as the value of E used in the equations.

A possible means of calculating the value %=E follows.

Assume a simple equation of state, i. e. , for an ideal gas:

PvY = constant

The energy necessary to compress a unit mass of gas from an initial
state P0, vo to a final state P, v is calculated, where P is pressure and
v the volume (specific volume for unit mass). U an arbitrary volume
having uniform pressure throughout is assumed (Figure A-3), then the
work done in compressing the volume through a differential volume is:

dw = Fdr = PAdr = Pdv --to v "¥ dv! - v0 "Y
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- -

d4r

Figure A-3. Schematic Representation for Three Dimensional or
Spherical Expansion Process.
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and the total work done on the gas in compressing from P, v to Po. vo is:

W joi [Pv 0 -Pv]=Y1 [ov o

If P0 = 0 (an expansion process in which the gas is allowed to expand
to infinity) then the total energy of the gas is:

Pv

Now assume an initial specific gravity for the explosive of 1. 6. a value
for y = 2. 8, and an initial pressure of 3 X( 106 psf. Then:

v=62.4(l.6) =.32f 3 su

and:

Ego = 3X 1a(.38 ) 536 X 10' ft?2 /sec 2

By assuming that the volume of explosive has doubled at breakup:

P _()Y (5)2.8 .143 5
PO

and:

Eg (.536 X 100) (2) (. 1435) = . 154 X W0 ft2 /sec'

The difference between these two values is the amount of energy con-
verted to kinetic energy (neglecting energy lost in plastic deformation
of the case, radiation, etc. ). Thus, the calculated value for %f.i7E for
the conditions assumed is:

42E= =2.56-.14 0 8700 ft. /sec.

This value is within the same order of magnitude as the value generally
used in the Gurney equations.
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TAYLOR'S THEORY FOR END INITIATED CYLINDERS

Imposing the conditions which allow only the detonation wave to
travel through the materials, the equations for finding the velocity of
the casing can be developed. To simplify this development, the coor-
dinate system is moved with the detonation front, thus the pressure of
the detonation products will not impart energy to the casing, but an

element of the casing will follow an equilibrium path in which the cen-

trifugal force is balanced by the instantaneous pressure of the gas prod-
ucts. For a plane perpendicular to the axis of the cylinder and at a
distance Z behind the detonation front, the equation which represents

this balance can be written as:

Zvr p = mD dt = mD2 cos _ (A-6)
dt d

where m = mass per unit length of cylinder

p = instantaneous pressure

r = instantaneous inside radius

D = detonation velocity of the explosive

0 = angle of inclination of the wall with respect to the cylinder

axis

t = time

at t = 0: Z and 0 - 0: r = r- and r - 1,.

With the proper trigonometric substitutions and coordinate conversion
to a fixed observer, also assuming a steady-state condition, and em-

ploying the conservation of mass and momentum, gives an equation of

the form:

sin? (o/Z)= POW p J (A-7)
ZmD p (D-u) Iu

where u = particle velocity associated with the detonation products

p = density of the detonation products

P0 = density of the undetonated explosive.

D04E RESEARCH INSTrI'uE- UNIVIERSIT OF DENVER
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The magnitude of the velocity is then given by:

V = ZD sin 0/2

or, using (A-7) above:
t

V = O (D-u) I)u (A-8)

The direction of the velocity vector is given as 6 = 1/2 0. Numerical

values can be obtained by evaluating the pressure, density and particle

velocity as a function of the radius of the expanding cylinder. If the

detonation products behave as an ideal polytropic gas, the pressure

and density during an adiabatic process are related by:

p = apy

and, for an idealized detonation wave, the following equations must be

satisfied:

poD = pl(D-ul}

p, " po(Dul)

D = c + ul

c2 = (dp/dp)

this gives five equations in eight unknowns, which can be solved if three

of the unknowns are specified. The initial explosive density and the

detonation velocity have been found experimentally for several different
explosives, and it has been found that a value for y of Z. 7 to 3. 0 is a

good approximation, therefore, providing the necessary requirements

for solution of equation (A-8).

CYCLONE PROGRAM (VON NEUMANN, STERNBERG, ET AL)

Problems involving transient shock dynamics and phenomena

arising in the flow of compressible fluids have been solved by numeri-

cal procedures, and for a complete analysis a high speed computer is

usually required. Von Neumann described a method for treatment of

shocks so that the normal discontinuity identified with shocks can be

replaced with a rapid but continuous change across the shock front. In

the calculations, artificial dissipative terms are introduced into the

DENVER RESEAICH INSTITE -UNIVERS OF DENVER



equations which give very nearly the correct velocity through the mate-
rial and across the thin layers describing the shock. The proper change
in pressure, density, temperature, etc., can also be provided. The
Rankine-Hugoniot equations for the boundary conditions are satisfied if
the dimensions of the shock layer are small compared with other
relevant physical dimensions. The flow of the metal, as well as the
gases, can be found and as a result the shape and velocity of the case
at any time can be determined.

In applying the Von Neumann- Richtmyer method for a cylinder
and employing the finite difference method discussed in Reference 11,
tle various materials are divided into zones with respect to a given
coordinate axes. 13 These zones are given L.-.grangian coordinates
which move with respect to the fixed coordinate system. If the fixed
coordinate system is given by R, Z, and the !,agrangian coordinates
given as k, 1, then the equations of motion are given by;

dZR -R OP 8Z 82 Za
d = ' p0 g 0 AO "k 81 - 81 Ok]

dzZ -R [OP OR 2k 1R
SPo RoAo -i Ok Ok 01

the energy equation is:

BE _P V
a)t a)t

and the equation of state of each material present is of a form:

p = p(E, V)

p0 = density of undetonated explosive

Ro = initial radius of the cylinder

A0 = initial areas of the zones in the explosive

P = pressure = p + q

V = specific volume

E = internal energy

q = artificial dissipative factor

and q = VoV\

DENVER RESEARCH ISUTE -UNIVEITY OF DENVER
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where a is adjusted to give the desired sharpness to the shock.

The mass of each zone ren-tins constant and the problem is one
of determining the nrotion oi the mass points associated with each zone.
The acceleration of each mass point is determined from the pressures
in the surrounding zones and for given time increments new velocity
components, specific volumes, pressures and energies are computed
for each zone.

The process starts at the initiation point of the explosive, and
at the various time increments each zone is examined to determine if
the detonation wave has reached it. If it has, the equation of state for
the explosion products is used for the zone from that time on, other-
wise the equation of state for the undetonated explosive is used for the
zone. The time increments are computed by means of a stability cri-
teria which insures that the total energy does not vary.

At the gas-metal boundary, problems arise because of velocity
gradients in the materials. Therefore, a scheme to allow slippage
at the boundary must be provided. The pressure must be c-ontinuous
across the boundary, so an interpolation process is used which involves
the pressures in both the gas and the metal. The motion of the metal
and gas are then determined independently.

DENVER RESEARCH INSTIME - UNIV T OF DENVER



APPENDIX B

FLAT PLATE ANALYSIS

A technique similar to that used to analyze the center initiated
cylinder is presented here for a flat plate where the explosive is
initiated such that a plane wave impinges on the plate surface (Figure
B-l).

Starting with the equation:

Sdd~x
F=ma or pI d x = O X

(where p = density of the plate, I = thickness of the plate and t

acceleration). This represents the equation of motion of a unit area of
material, and:

dtZ - pIkx

let A- 1:Eo x0,
p1

dax A

t dx a x d ( dx) dV _dV dx dV
dt 'dtz dt dt dx dt dx

or VdV = Ax" dx

V 2A I -y- x + C1
1 -Y

C -= V0
2  + 2A -{ -,)

y J 1 0

dtI I II I 2A
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Figure Bl-1. Flat Plate Schematic.
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let B let C 2y/-I 2

dx BF[C -d]jdt- J

dt x44-. d] dx

C V 2 (Y-I)pf (") I [V: ("- O)pf ]
-

Z [O0 X =X P + X0J

-(Yv- 1) x
Compare C tox , i.e., to-y-, for x > x,.

X

For x Z xo, C will always be greater than x by an amount equal
to:

v (y- l)pt

z Pox0o

Use the binomial expansion theorem to expand the integrand an" the
integrate term by term.

57I C -d 1"3- A A
Bdt =[C•1+ -" Cxd x + 23-z l- x + d...jdx

- . -d 1- 3 - zd
Bt=D+ + ----l-) C' X 2 z(da)CIc Z~ -)Zz. Z, ( I -Zd) 'x

21.3.5 , 4-A ]
__ _.3!_ _3d) x * *.d

CD (Zk)' (k+') -kd
B D Z Z Wk )'I -lkd)

k=O

att=O. x=x0

.••(2k)! -(k+-!) -kd

Dz 2zk!)- (lI-kd) C Xo
k=N
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Although analytical solutions have been obtained from the equations
above for x and V as functions of t for the flat plate, a numerical
integration technique may provide more expedient results.

A technique similar to that used for the cylinder is used to

obtain plots of V vs. x (Figure B-Z), x vs. t (Figure B-3), and V vs. t
(Figure B-4). The assumptions are given below.

y- I

2 Pox0

pg

V = K'F' + V

Po = 2 X 108 psf

p = 15.25 slugs/ft3

xO = .125 ft

t = .0417 ft

y = 3.0

x! < x < 1.5x8

2

K' = 4 X10(- 5) = 7. 87 X lO7
15. 25(. 0417)

Vt = 78.7F' + V0z

Using plots similar to the ones obtained above and by dividing the plate
into concentric rings, the shape of a center initiated plate at various



59

4000

3600-

32M'0 VO .1000

2'io
2800

24O0

1600

4w

0 r
0 32 .13 .14 .15 .16 .17 .18 .19

x (Net)

Figure B-2. Velocity of an Explosively Accelerated Flat Plate Versus
Distance of Travel.
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Figure B-3. Distance of Travel Versus Time for an Explosively
Accelerated Flat Plate.
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Figure B-4. Velocity of an Explosively Accelerated Flat Plate Versus
Time.
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times can be obtained (Figure B-5). The velocity vectors can then be
determined from this plot and the strain analysis performed to predict
the fragmentation of the plate.

To examine the effect of y for this case, we again assume
VO = 0, and the equation for V reduces to:

P f(Y-l1) X0 x p1 (y-

= KI = K F$y-I

where K' is a constant similar in form to the constant K found ,r the
cylindrical case, and F' is a function of y similar in forv * he func-
tion F found for the cylindrical case. The same argument. t-oarding
y will then apply to the flat plate.

Curves showing 4 vs. x for various values of y for the flat
plate are shown in Figure B-6.

DEVRRESEARCH BINSTUTE - UIES FDNE
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Exploive Plate

Shape of Plate at
various tin"e

Detonaation
point

Figure B-5. Schematic of the Shape of a Flat Plate Due to Center
Point Initiation of the Explosive.
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Figure B-6. Variation of the 4F7 (Proportional to Velocity) Versus
Distance of Travel of Flat Plate for Various Values of
the Specific Heat Ratio (y).
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